т.	D 1		т.	•
	Red	O17	ν_{\sim}	0100
	$R \cap C$	() X	na	VIII V

۸	ח ה ב	Reactions
А	RECIOX	Reactions

- 1. Redox stands for
- 2. Redox reactions involve a

3. (single replacement, combustion, synthesis,

decomposition)

B. Terminology

1. when all bonds are <u>assumed</u> to be ionic (not shared).

2.

a. . Charge (oxidation #)b. . Charge (oxidation #)

Ex:

3. You can write reactions out as

a. This shows what is happening to the reactants independently.

b.

4. Agents (these are

a.

b.

5. Example: $Cu_{(s)} + Ag^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + Ag_{(s)}$

C. How do you determine whether reduction or oxidation is happening?

1

2. How to determine oxidation numbers:

Substance	Oxidation Number

- 3. NOTES!
 - a. If there are the two "unknown" oxidation states, the
 - b. Metals with known ionic charges are going to have an oxidation state that is the
- 4. Examples: Find the ox # of each element in the following: HNO₃

 CO_2

SO₃²⁻

 NO_2^-

- D. How to balance Redox Reactions
 - 1. Oxidation States Method Steps:
 - a. Find the oxidation number of all substances.
 - b. Link the elements that have changed oxidation state.
 - c. Balance the elements that you have linked
 - d. Determine if the linked elements have oxidized or reduced.
- e. List the TOTAL number of electrons lost or gained (if 2 of an element is present, multiply number of electrons by 2)
- f. Make the number of electrons equal for both reactions by multiplying. Use the multiplier as the coefficient for BOTH linked substances.
 - g. Then balance the rest of the reaction (leave the H's for last and O's for second to last)

$$Au^{3+} + I^- \rightarrow Au + I_2$$

- 2. Acidic and Basic solutions
 - a. Acidic solutions are
 - i. Balance the equation using the oxidation states method.
 - ii. After you have balanced the equation:

a.

b.

$$In + BiO^+ \rightarrow In^{3+} + Bi$$

$$Zn + VO_3^- \rightarrow Zn^{2+} + VO^{2+}$$

- b. Basic solutions are full of
 - i. Balance the reaction as if it were an acidic solution,
 - a. Then, add
 - b. If necessary,