Name

Period	Date	,	/	/

8 · Thermochemistry

BOND ENERGIES and ENTHALPY OF COMBUSTION

Table: Some Average Single- and Multiple-Bond Energies (kJ/mol)

	Н	C	N	O	F	Si	P	S	C1	Br	I
Н	436	413	391	463	565	318	322	347	432	366	299
C		346	305	358	485			272	339	285	213
N			163	201	283				192		
O				146		452	335		218	201	201
F					155	565	490	284	253	249	278
Si						222		293	381	310	234
P							201		326		184
S								226	255		
Cl									242	216	208
Br										193	175
I											151

Multiple Bonds

N=N							
N = N $O = O (in O2)$	945	C≡C	835	C≡O	1072	*C=O (in	799
$O=O$ (in O_2)	498	C=N	615	C≡N	887	$CO_2)$	

- 1. Write the balanced equation for the combustion of 1 mole of ethane, C₂H₆(g), forming H₂O(l).
- 2. Draw Lewis structures for each of the species.

C_2H_6	O_2	CO_2	H_2O

3. Calculate the bond energies of the *reactants*.

Total Bond Energy (*Reactants*) =

Calculate the bond energies of the *products*.

- C-H @ _____kJ/mol = ____
- □ C=O @ _____ kJ/mol = ____
- □ C-C @ _____ kJ/mol = ____ □ O=O @ ____ kJ/mol = ____
- □ O−H @ _____kJ/mol = ____

Total Bond Energy (*Products*) =

4. $\Delta H_{reaction} = Bond Energy_{(reactants)} - Bond Energy_{(products)}$

What is the ΔH_{combustion} based on bond energies?

5. Remember that we also learned a different method of calculating the enthalpy of a reaction. Calculate the $\Delta H_{combustion}$ of ethane using Hess's Law and the thermochemical data below.

Standard Enthalpies of Formation (kJ/mol)						
$C_2H_6(g)$	$C_2H_6(g)$ ethane -84.7					
H ₂ O(l)	water	-285.8				
CO ₂ (g)	carbon dioxide	-393.5				

6	Summarize	vour	calcu	lations
υ.	Summarize	your	carcu	ianons.

7.

· · · · · · · · · · · · · · · · · · ·			
		ΔH _{combustion} (kJ·mo	1-1)
	Bond Energies		
Hess's Law	using ΔH _{formation}		
Differences may occur molecule to molecule.	because Bond Energies are	bond er	nergies that may vary from
Notice that in one meth Why?	od, you use products – reactan	ts and in the other yo	ou use reactants – products .
- In Hess's Law you us	se values for the	(formation/b	reaking) of bonds. This occurs
	(reactants/products). You mu		
(products/reactants).			
- For Bond Energies ye	ou use values for the	(format	ion/breaking) of bonds. This
	(reactants/products).		
(products/reactants).			
	(reactar	nts-products / produc	ts-reactants)
	Bond Energies		
	Hess's Law		
	Enthalpy of Combustion, Δ	H°	Enthalpy of Combustion, ΔH
<u>Substance</u>	(kiloJoules/mol)	Substance	(kiloJoules/mol)
$C_{(s)}$	-393.5	$C_2H_5OH(l)$	-1366.7
$H_2(g)$	-285.8	$H_2O(l)$	

- (a) Write a separate, balanced chemical equation for the combustion of each of the following: C(s), $H_2(g)$, and $C_2H_5OH(l)$. Consider the only products to be CO_2 and/or $H_2O(l)$.
- (b) In principle, ethanol can be prepared by the following reaction:

$$2~C(s) + 2~H_2(g) + H_2O(l) \rightarrow C_2H_5OH(l)$$

Calculate the standard enthalpy change, ΔH° , for the preparation of ethanol, as shown in the reaction above.