Free Response Practice!

- 1. Answer the following questions using principles of chemical bonding and molecular structure.
- a). Consider the carbon dioxide molecule, CO_2 , and the carbonate ion, CO_3^2 .
 - (i) Draw the complete Lewis electron-dot structure for each species.
 - (ii) Account for the fact that the carbon-oxygen bond length in CO_3^{2-} is greater than the carbon-oxygen bond length CO_2 .
- b). Consider the molecules CF₄ and SF₄.
 - (i) Draw the complete Lewis electron-dot structure for each molecule.
- (ii) In terms of molecular geometry, account for the fact that the CF_4 molecule is nonpolar, whereas the SF_4 molecule is polar.
- 2. Answer the following questions that relate to chemical bonding.
- a). Draw the complete Lewis electron-dot structure for CF₄, PF₅, SF₄.
- b). On the basis of the Lewis structures drawn above, answer the following questions about the particular molecule indicated.
 - (i) What is the F—C—F bond angle in CF₄?
 - (ii) What is the hybridization of the valence orbitals of P in PF₅?
 - (iii) What is the geometric shape formed by the atoms in SF₄?
- c). Two Lewis structures can be drawn for the OPF₃ molecule, as shown below.

Structure 1 Structure 2

- (i) How many sigma bonds and and how many pi bonds are there in structure 1?
- (ii) Which one of the two structures best represents a molecule of OPF₃? Justify your answer in terms of formal charge.