Teacher's Tools® Chemistry Gases and Stoichiometry: Ideal Gas Law: Worksheet 2 | 1. A gaseous mixture consists of 11.0 g of CO_2 and 48.0 g of O_2 . The volume of the container is 22.4 L and the temperature is 273°C. Calculate the following: (R = 0.0821 atm•L/mol•K) | |--| | (A) the moles of each gas | | (B) the mole fraction of each gas | | (C) the partial pressure of each gas | | (D) the total pressure of the mixture | | 2. An 11.2 L container is filled with H_2 at STP. Then 40.0 g of liquid Br_2 is introduced and the mixture is heated to 101°C. At this temperature, the reaction: $H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$ goes to completion. Calculate the final pressure in the container at 101°C. | | 3. When 81.4 mL of H_2 is collected by displacement of water, the water levels inside and outside the gas-collection vessel are equal. This means the pressure of the mixture of gas in the vessel is equal to barometric pressure. The barometric pressure is 740.0 mm Hg and the temperature is 25°C . Find the moles of H_2 gas in this sample. The vapor pressure of water at 25°C is 23.76 mm Hg. | | 4. The density of a certain gas at 27°C and 740 mm Hg is 2.53 g/L. Assuming that the gas behaves ideally, calculate its molar mass. | ## **Teacher's Tools® Chemistry** Gases and Stoichiometry: Ideal Gas Law: Worksheet 2 Calculate the volume of CO₂ produced when 24.0 g of C is completely burned. All measurements are made at 745 mm Hg and 25°C. A balloon is filled with 0.602 g of H₂ at 35°C, 1 atm. Calculate: (A) The volume of the balloon under these conditions (B) The volume of the balloon if it were tied to a brick and thrown into a pond where, at the bottom, the pressure was 840 mm Hg, and the temperature was 5°C. 7. A student carries out a reaction, collecting the HCN gas in a 2.0 L container over water, so that the - (A) The partial pressure of the HCN gas. - (B)The mass in grams of the HCN collected.