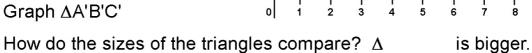
14.6 Notes Day 1: Transformation Matrices

Transformation matrices are used to apply linear transformations (i.e., reflections, translations, rotations, & dilations) to matrices that represent linear systems.

Recall: Given linear transformation $T:(x, y) \rightarrow (3x-2y, x+y)$, to find T:(7, 4) we plug in 7 for x and 4 for y to get $T:(7, 4) \rightarrow (3(7)-2(4), 7+4) = (13, 11)$

ex 1: Given \triangle ABC with vertices A(1,1), B(2,3), & C(4,2)

- a) Graph ∆ABC
- b) Find the image under $T:(x, y) \rightarrow (3x-2y, x+y)$
 - $A' = T:(1,1) \rightarrow ($ $B' = T:(2,3) \rightarrow ($
 - $C' = T:(4,2) \to ($
- c) Graph ∆A'B'C'



2

Do the Δ s have the same orientation (both names clockwise)? Y / N

d) Repeat part (b) using a transformation matrix for 3x-2y and x+y

thus transformation T:(x,y) = [[][[x]][T = [[1

matrix T is...

[

11

T:(1,1) = [[111] \prod]][]]]] [

]][y]]

11 [

11

T:(2,3) = [[1 [[П [[

]][]]]] T:(4,2) = [[1 [[П

e) Find the ratio of the area of the new triangle to the original triangle.

= absolute value of the determinant of T area of ∆A'B'C' area of ∆ABC

> = | | = ||=| |=

- .. The new triangle is the area of the original triangle.
- Is the new triangle's orientation the same as the original's or different? f)

ex 2:	Given	T:(x, y)	\rightarrow	(x-2y,	2y)
-------	-------	----------	---------------	--------	-----

- b) Find the determinant of T: | T | = =
- c) Find the image of A(1,-1), B(2,0), & C(-3,1) under transformation T:

d) How do the areas of triangles ABC & A'B'C' compare?

Image $\triangle A'B'C'$ is the area of $\triangle ABC$

Preimage (original) \triangle ABC is ______ the area of \triangle A'B'C'

e) Is the orientation of the image the same as or the opposite of the original? Why?

The orientation is b/c

ex 3: Composition of transformations: Given transformation matrices

and point P(3,4), find each of the following:

a)
$$(T)(P) = [[0 1] [[] = [[]] [2 -1]]$$

c) Use the associativity of matrix multiplication to find ST(P) via ONE transformation instead of two as we did in parts (a) and (b).

Recall: ST is called a "composite" transformation S • T

Note: On your HW, to "describe the motion" of a transformation, give the motion left ____ or right ____ (i.e., delta x)

& the motion down ___ or up ___ (i.e., delta y). $\Delta x = \text{change in the } x \text{ direction } 7$

14.5 HW	page 535 # 26b	Manufacturing
	tables chairs des	sks amnt. of time available
Carpentry	[[120	5] Carpentry [[14,960]
Assembly	[40 65 110	0] Assembly [8,970]
Finishing	[80 90 12	5]] Finishing [12,590]]

Want to use all available labor. How many t, c, d, should the manager schedule for production each week? I.e., want to find t, c, d.

$$X = A^{-1}B \leftarrow Do \text{ on T.I.}$$

$$X = \begin{bmatrix} [t] & [[18] \\ [c] & [110] \\ [d] \end{bmatrix}$$

18 tables, 110 chairs, 10 desks

14.5 HW	pag	page 546 # 5		Weather Forecasting	
	sunny	cloudy	rainy		
sunny	. []	.10	.10]	← (a) Day-to-day weather	
cloudy	.00	.40	.60]	= T transition matrix	
rainy	[1.00	.00	.00]]		

(b) Calculate T²

On T.I., enter 3x3 matrix using Matrix >> Edit Then calculate T 2 by using Matrix >> Names 2nd >> Quit >> Use x^2 key

 $M_0 = [1.00 .00] \leftarrow Initial weather values on Monday$

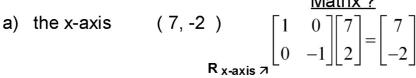
To find weather on Wednesday given Monday, find: M₀ T ²

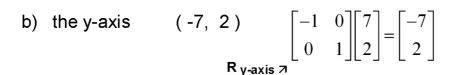
=[.74 .12 .14]

Thus we have a 14% chance of it being rainy.

ex 1: Graph the point (7, 2). Then...

Reflect Over	New Point	Transformation
		Matrix 2





c) line y = x (2, 7)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$R_{y=x7}$$

d) line y = -x
$$\begin{pmatrix} -2, -7 \end{pmatrix}$$
 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -7 \end{bmatrix}$

e) Find $(R_{y=x})(R_{x-axis})$ using the transformation matrices we found:

$$(R_{y=x})(R_{x-axis}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$(-2,7)$$

$$(4,2)$$

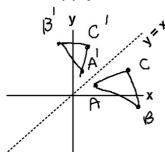
f) Verify on your graph that this matrix works using sample point (7, 2); show how point (7, 2) changes using...

The graph:
$$(7, 2)$$
 flipped over the x-axis becomes $(7, -2)$; $(7, -2)$ flipped over line $y = x$ becomes $(-2, 7)$

The matrix:
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 7 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$$
Matrix from part (e) 7

^{*} Note: we apply the transformation for the matrix closest to the input first; x-axis and THEN y = x

Graph preimage \triangle ABC with vertices A(2,1), B(7,-1), & C(6,2). ex 2: Then apply the transformation matrix R $_{v=x}$ & graph the image.



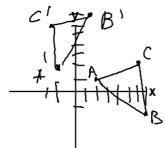
 $R_{\theta} =$ Thm: $\sin \theta$ $\cos\theta$

 $\cos \theta - \sin \theta$ will apply a θ -degree rotation about the origin.

ex 3: Find:

Find:
a) R_{180°} =
$$\begin{bmatrix} \cos 180^{\circ} & -\sin 180^{\circ} \\ \sin 180^{\circ} & \cos 180^{\circ} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 \leftarrow Unit circle values :) \leftarrow Unit circle values :)

- b) $(R_{180^{\circ}})(R_{x-axis}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = R \frac{\sqrt{-\alpha x}}{\sqrt{-\alpha x}}$
- ex 4: Graph preimage \triangle ABC with vertices A(2,1), B(7,-1), & C(6,2). Then find and graph its image under transformation R 90°.



Step 1:
$$R_{90^{\circ}} = \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Step 2: $(R_{90^{\circ}})(\Delta ABC) = \Delta A'B'C'$

$$\begin{bmatrix} R_{90}^{\circ} & A & B & C \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 7 & 6 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -2 \\ 2 & 7 & 6 \end{bmatrix}$$

B'(1,7) C'(-2,6)

Chapter 14 Study Guide

- You may use a 3 x 5 notecard of your own hand-written formulae on the Ch. 14 Test.
- * Recommended: Review WS (make sure you understand the linguistics)
- * Need to know:
 - * Properties of matrices (the chart in your notes)
 - * Matrix addition, subtraction, & multiplication (by hand)
 - * Scalar multiplication (by hand)
 - * Determinant
 - * Dimensions
 - * Notes & HW applications, e.g. communication matrices (given direct communication, i.e. no relay, with matrix M, M² means you use exactly 1 relay, M + M² means at most 1 relay, M³ means you use exactly 2 relays, M + M² + M³ means at most 2 relays, etc.)
 - * Transition matrices (given initial state M_0 , find next state $M_1 = M_0T$, $M_2 = M_0T^2$, $M_3 = M_0T^3$, et cetera; find steady state S s.t. S = S T)
 - * Transformation matrices (given transformation T and coordinate points, build a matrix eq'n to find the image of the points -- i.e., [T] [matrix of preimage points] = [matrix of image points])
 - * Et cetera

Extra review examples:

1) Write a matrix equation to find the intersection of the three planes (do not solve unless you have a T.I.): 3x - 4y + 7z = -3

Step 1: Write matrix eq'n using coefficients of linear system 6x + 3y + 5z = 23-4x + 9y + 37z = -17

Step 2: IF you have a T.I., then find the inverse of the matrix on the far LHS; multiply this inverse on the LEFT on both sides of the eq'n to get answer written as a coordinate point: (x, y, z) = (3.29, 2.13, -.62)

- 2) Given A = $\begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}$, find the following (by hand):
 - a) A^t

b) A -

c) A²

Pop Quiz Ch. 14

$$\begin{bmatrix}
3x & 4y \\
8z & 2w
\end{bmatrix} = \begin{bmatrix}
15 & 20 \\
80 & 142
\end{bmatrix}$$
Solve

3 Solve
$$\begin{bmatrix} 3 & 5 \\ 8 & 4 \end{bmatrix} X = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

Pop Quiz Ch. 14 Score/17

$$\begin{bmatrix}
3x & 4y \\
8z & 2w
\end{bmatrix} = \begin{bmatrix}
15 & 20 \\
80 & 142
\end{bmatrix}$$
Solve $x=5$ $y=5$

$$\overline{z=10} \quad w=71$$

3 Solve
$$\begin{bmatrix} 3 & 5 \\ 8 & 4 \end{bmatrix} X = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$
$$X = \begin{bmatrix} -3/28 & -1/7 \\ 13/28 & 2/7 \end{bmatrix}$$