14.5 Notes: Transition Matrices

Transition matrices are used to analyze, describe, & predict change.

E.g., manufacturers who conduct market analysis to predict consumer trends over set periods of time use transition matrices to determine the percentage of people who switch brands.

- ex 1: Crest and Colgate both manufacture toothpaste. (a) Build a transition matrix that shows the percentages of customers who either stay with the brand they are using or switch brands based on the given information:
 - * 90% of people who use Crest continue to use Crest while 6% switch to Colgate the next month & 4% switch to some other brand
 - * 72% of people who use Colgate continue to use Colgate while 11% switch to Crest the next month & 17% switch to some other brand
 - * 60% of people who use some other brand continue to use some other brand while 21% switch to Crest the next month & 19% switch to Colgate

(b) Conduct a market survey to collect the current market share in percentages (in this case, we will do a class survey)

- (c) Suppose toothpaste is bought once per month. Predict market share...
 - i) one month from now: $M_1 = M_0 T =$
 - ii) two months from now: $M_2 = M_1 T = M_0 T T = M_0 T^2 =$
 - iii) three months from now: $M_3 = M_0 T^3 =$
 - iv) 30 months from now: $M_{30} = =$
 - v) 40 months from now: $M_{40} = =$ = * Notice M ₃₀ and M ₄₀ are almost the same; this is called a "Steady State"

What market conditions must be true for the 30-month and 40-month predictions to be accurate?

Very little change in , very little change in , very little flux in , et cetera.

(d) Suppose another class was surveyed and their initial market profile was:

	Crest	Colgate	other
Market Share	[.75	.15	$.10] = M_0$

Find the steady state for this matrix using the same transition matrix.

I.e., we want to find some steady state matrix S such that S = ST where $S = M_0 T$? ... so multiply by

Idea: Keep multiplying M_0 T times T until the decimals level out and don't change much, e.g. calculate M_0 T⁵⁰.

14.4 HW	page 534 # 26a	Manufacturing	
	tables chairs desks	amnt. of time available	
Carpentry	[[120	Carpentry [[20,250]	
Assembly	[40 65 110]	Assembly [12,070]	
Finishing	[80 90 125]]	Finishing [17,000]]	

Want to use all available labor. How many t, c, d, should the manager schedule for production each week? I.e., want to find t, c, d.

$$X = A^{-1}B$$
 \leftarrow Do on T.I.
 $X = \begin{bmatrix} [t] & [[25] \\ [c] & [150] \\ [d] \end{bmatrix}$

25 tables, 150 chairs, 12 desks