14.4 Notes: Communication Matrices - Applications for Systems of Eq'ns

ex 1: Set up a matrix equation that can be used to find the intersection of the 3 planes: 3x - 4y + 7z = -3

$$6x + 3y + 5z = 23$$

$$-4x + 9y + 3z = -17$$

$$A \qquad X = B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

On T.I.: 2nd >> Matrices >> Edit

[A] Enter 3 x 3 >> Enter elements

[B] Enter 3 x 1 >> Enter elements

2nd >> Matrices >> Names

[A] -1 [B] >> Enter >> Screen will show sol'n: [[

ex 2: 4 ranger stations X, Y, W, & Z can communicate as shown.

(a) Use a matrix to show all communication networks.

FROM
$$X Y Z W$$

$$C = Y 0$$

$$Z 0$$

$$W 0$$

This matrix shows the
of ways a station can
communicate
directly to another.

□ Diagonal is zeros since stations
 do not talk to themselves

(b) Now build a matrix using 1 relay:

TO X Y Z W
FROM X
Y
Z
W

This matrix shows the
of ways a station can
communicate using
one relay.

Notice: this is so C² represents

(d) Calculate C + C²; what does this sum represent?

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

The sum $C + C^2$ represents the number of ways to communicate with

(e) What would C³ represent?

of ways to communicate with

(f) What would $C + C^2 + C^3$ represent?

of ways to communiate with

(i.e.,

(g) What other applications might this communication mapping be useful for besides communications between ranger stations?

Example: