Name	Period	Date:
INamic	1 CHOU	Daic.

Heating and Cooling Curves

Directions:

- (1) Sketch the heating or cooling curves associated with water (use these to help you with the following problems).
- (2) Calculate the amount of heat energy lost or gained during each temperature change.

$$c(H_2O_{(s)}) = 2.05 \text{ J/(gC}^{\circ})$$

$$c(H_2O_{(l)}) = 4.18 \text{ J/(gC}^{\circ})$$

$$c(H_2O_{(g)}) = 2.08 \text{ J/(gC}^{\circ})$$

$$\Delta H_f = 334 \text{ J/g}$$

$$\Delta H_v = 2260 \text{ J/g}$$

- 1. 45g of H₂O changing in temperature from 110°C to -85°C
- 2. 15g of H₂O_(g) changing in temperature from 100°C to -75°C
- 3. 20.5g of H₂O_(l) changing in temperature from 100°C to -5°C
- 4. 57g of H₂O changing in temperature from -40°C to 150°C
- 5. 39g of H₂O changing in temperature from 134°C to -20°C
- 6. 17g of H₂O changing in temperature from 130°C to H₂O_(s) at 0°C
- 7. 80g of H₂O changing in temperature from –24°C to 160°C
- 8. 80g of H₂O changing in temperature from 160°C to -24°C
- 9. 41g of H₂O changing in temperature from -70°C to H₂O_(g) at 100°C
- 10. 4g of H₂O changing in temperature from -9°C to H₂O_(l) at 100°C