Electrons: Bringing the Negativity, one Particle at a Time: Ch. 5

I. Background

- A. Review: Atomic Models
 - 1.
 - 2.
- B. First, a bit about light...
 - 1. Light has
 - 2. A wave has two important characteristics:
 - a.
 - b.
- C. The Electromagnetic Spectrum (p. 120) Weakest (long)

Rutherford's Atom

Strongest (short)

- 1.
- 2.
- D. But sometimes,
 - 1.
 - 2.
 - a. Certain colors are emitted by certain metals.
 - 3. Thus, light also has

(known as

E. Thus,

II.

- A. Bohr found that
- B. He concluded that electrons exist on
- C. This only works for hydrogen.
- D. Line spectra of various elements:
- E. How Bohr Found His Model...

by the

F.

- 1. Electrons
- 2. When they
- 3. Because

III. Quantum Models

A.

- 1. Probability and Orbitals
 - a.
 - b. These orbitals predict
 - c. There are 4 types of orbitals.

Orbital Shape # of suborbitals max # e-'s

B.

- 1. Using orbitals, we can give electrons an "address."
- 2. Your map is the
- 3. Orbitals:

- 4. The number in front of the orbital type is also known as the
- 5. How to write Electron Configurations
 - a. Locate the element (on the periodic table)
 - b. Calculate the amount of electrons the element has (one box=one electron).
 - ii. NOTE: If there is a charge, make sure you subtract it!
 - c. From left to right, list each orbital that you pass before getting to your element

Electrons: Bringing the Negativity, one Particle at a Time: Ch. 5

- d. For each orbital you pass, write the amount of boxes in each orbital as a superscript of each house.
 - e. Check that the sum of the superscript numbers match the number of electrons from step 2.

number of electrons in orbital Examples: Write the electron configurations of elements and ions. Nitrogen:

Magnesium:

Ca²⁺·

- 6. d-block electrons are
- 7. f-block electrons are
- 8. Electron Configuration Diagram

```
1s^2
2s^2 2p^6
3s^2 3p^6 3d^{10}
4s^2 4p^6 4d^{10} 4f^{14}
5s<sup>2</sup> 5p<sup>6</sup> 5d<sup>10</sup> 5f<sup>14</sup>
6s<sup>2</sup> 6p<sup>6</sup> 6d<sup>10</sup> 6f<sup>14</sup>
 7s^2 7p^6 7d^{10} 7f^{14}
```

The order: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2...$

- 9. Shortcut Using Noble Gases
 - a. Use the noble gas
 - b. You can use the symbol for that noble gas as

Practice:

C.

- 1. Diagrams used to show the electrons and the energy levels they occupy in an atom.
- to represent the different orbitals. 2.
- 3. Electrons are represented by
- 4. Electron Principles (helps to answer how to draw them)
 - a. First, present in each orbital.

b.

i.

ii.

C. i.

d.

i.

- D. Excited vs. Ground State
 - 1. All the electron configurations we have been writing have been for
 - 2. If an orbital isn't filled when it should be, the atom is
 - 3. If an orbital has more electrons than it can hold.