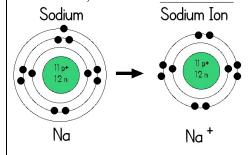
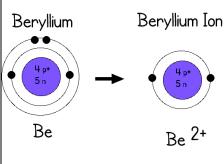

CHEMICAL BONDING: IONIC BONDS & IONS

What is an Ion? Ions are _____ particles that form when atoms gain or lose electrons. ____ electrons changes an atom into a negative ion. electrons changes an atom into a positive ion.

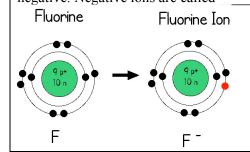

Lithium Ion

(superscript = superman = up in the air)

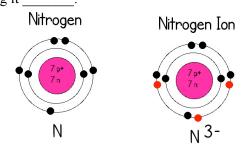
Sodium Ion


We've seen sodium before. Just like lithium, and all other alkali metals, it has 1 valence electron. When it loses that electron, it becomes

Beryllium Ion

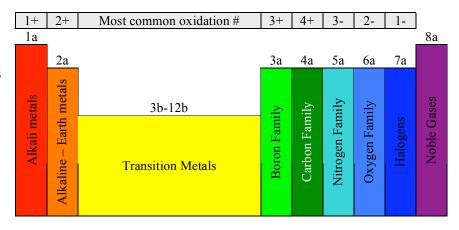

Let's take a look at beryllium. It has 2 valence electrons & is able to lose both. What do you think the charge becomes? 2+! Notice how I write the charge the number.

Positive ions are called


Fluorine Ion

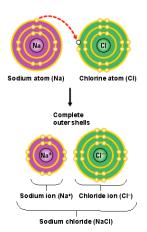
Now, let's take a look at a fluorine atom, a halogen, with 7 valence electrons. It is definitely unhappy with 7 electrons, it really wants 1 more. If it gains an extra electron, its overall charge becomes negative. Negative ions are called

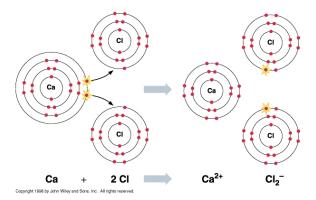
Nitrogen Ion


Looking at nitrogen, with 5 valence electrons, what do you think it will become? It gains 3 electrons, making it

Oxidation Numbers

We actually have an easier way of remembering this... An oxidation number indicates the charge on the atom when electrons are lost or gained. Use this table to help remember:


- Oxidation Number = electrons
 Oxidation Number =
- Oxidation Number = electrons



Bonding Atoms: The point of the electron dating game was that some elements match really well. Let's look again at sodium & chlorine. Sodium has an extra electron. Chlorine needs an electron. Sodium gives its lonely electron to chlorine & voila! Perfect! Match made in heaven!

Why, I ask? So, after the electron moves, the positive sodium ion is then immediately attracted to the negative chloride ion. Why are they attracted to each other? Well, as Paula says...

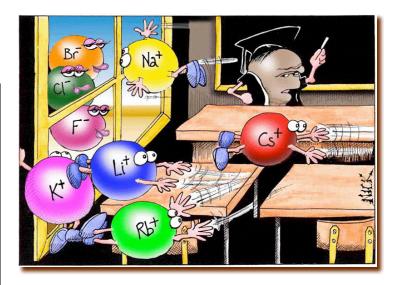
Ionic Bond: An ionic bond occurs when electrons are ______ from one atom to another, creating an ______ between _____ charges. These bonds are not limited to a single pair of atoms. In NaCl, each Na+ is attracted to all of the neighboring chloride ions. Likewise, each Cl- is attracted to all the neighboring sodium atoms. These ions form in a repeated, 3-dimensional pattern called a ______. This means the positive and negative atoms are arranged in alternating patterns. This is why salt is formed in cubes.

Ionic Bond Example

The best example of an ionic bond is NaCl, but there are many more examples of ionic bonds. Let's look at calcium & chlorine. Calcium gives 1 electron to 2 different chlorine atoms. When calcium loses two electrons, it becomes ______. Each chlorine gains 1 electron, becoming ______. BUT... we have 2 chlorine atoms!

Mini-lesson on Chemical Formulas

- If 1 calcium atom bonds to 2 chlorine atoms, the compound is
- To show there are 2 chlorine atoms for every 1 calcium atom, we place a
 2 to the right of the chlorine atom's symbol.
- Subscript (sub = below) is written to the right & slightly below the symbol.


Compound	Elements
CO_2	
NH4	
C_3H_8	
Al(OH) ₃	
CO(NH ₂) ₂	

Making Bonds

>Let's put it all together & see if you can write the chemical formula for each of the two ions.

The goal: the oxidation numbers add up to 0.

Cation (+)	Anion (-)	Compound
Li ⁺	S^{2-}	
Mg ²⁺	C1 ¹⁻	
Al ³⁺	$(PO_4)^{3-}$	
Al ³⁺	S ²⁻	
Al ³⁺	(OH) ¹⁻	
Mg ²⁺	(PO ₄) ³⁻	

